Multi-start methods for combinatorial optimization
نویسندگان
چکیده
Multi-start methods strategically sample the solution space of an optimization problem. The most successful of these methods have two phases that are alternated for a certain number of global iterations. The first phase generates a solution and the second seeks to improve the outcome. Each global iteration produces a solution that is typically a local optimum, and the best overall solution is the output of the algorithm. The interaction between the two phases creates a balance between search diversification (structural variation) and search intensification (improvement), to yield an effective means for generating high-quality solutions. This survey briefly sketches historical developments that have motivated the field, and then focuses on modern contributions that define the current state-of-the-art. We consider two categories of multi-start methods: memory-based and memoryless procedures. The former are based on identifying and recording specific types of information (attributes) to exploit in future constructions. The latter are based on order statistics of sampling and generate unconnected solutions. An interplay between the features of these two categories provides an inviting area for future
منابع مشابه
Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search
A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...
متن کاملChapter 12 MULTI - START METHODS
Heuristic search procedures that aspire to find global optimal solutions to hard combinatorial optimization problems usually require some type of diversification to overcome local optimality. One way to achieve diversification is to re-start the procedure from a new solution once a region has been explored. In this chapter we describe the best known multi-start methods for solving optimization ...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملA Survey of Multi-start Methods for Combinatorial Optimization
Multi-start methods strategically sample the solution space of an optimization problem. The most successful of these methods have two phases that are alternated for a certain number of global iterations. The first phase generates a solution and the second seeks to improve the outcome. Each global iteration produces a solution that is typically a local optimum, and the best overall solution is t...
متن کاملSelecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction
In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 226 شماره
صفحات -
تاریخ انتشار 2013